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Abstract. In several recent papers we obtained existence theorems for complementarity problems
and variational inequalities using for each of them a particular notion of exceptional family of ele-
ments. Now, in this paper we introduce a new notion of exceptional family of elements. This notion
is based on an Implicit Leray-Schauder Alternative. By this new notion we obtain a unification of
the study of solvability of complementarity problems and of variational inequalities. The paper is
finished with a section dedicated to variational inequalities with δ-pseudomonotone operators.
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1. Introduction

Variational Inequalities Theory and Complementarity Theory, both have many ap-
plications in Economics, Engineering, Mechanics, Elasticity, Fluid Mechanics,
Game Theory and Optimization [2, 6, 18–20, 23–25, 32, 40, 44].

Generally, the applications are related to the study of equilibrium. In this paper
we will consider variational inequalities on unbounded convex sets and nonlinear
complementarity problems. The study of solvability of such problems, generally
defined for nonlinear mappings, is not an easy problem. Because of this fact, it is
natural to apply deep and powerful topological methods.

G. Isac, V. Bulavski and V. Kalashnikov introduced in [31] a new topological
method, applicable to the study of complementarity problems and also to the study
of variational inequalities.

This method was introduced by using the topological degree. Until now several
papers based on this method have been published [7–9, 21–23, 25–39, 47, 50–
60]. Recently, we remarked that this method can be developed applying Leray–
Schauder type alternatives [29–30].

We note that our topological method is based on the notion of “exceptional fam-
ily of elements” which is supported by the topological degree or by Leray–Schauder
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type alternatives. This notion was initially introduced for complementarity prob-
lems and after some time it was adapted for variational inequalities [50, 39]. So,
we obtained two variants of the notion of exceptional family of elements and by this
way we obtained several existence theorems. Because a complementarity problem
is a variational inequality on a closed convex cone, it is interesting to know if both
notions can be unified.

This paper is dedicated to this problem. We will show that by using a special im-
plicit Leray–Schauder type alternative we unify both notions of exceptional family
of elements. By this unification, we can extend to variational inequalities several
existence results obtained before for complementarity problems.

In the last part of this paper, we will show that if, a variational inequality is
defined on an unbounded set by a pseudomonotone operator, then the solvability is
equivalent to the fact that the mapping is without exceptional families of elements.

We will finish this paper by some comments and open problems.

2. Preliminaries

We will denote by (H,<.,.>) an arbitrary Hilbert space, by K a closed convex cone
in H and by � an arbitrary non-empty closed convex set. A closed convex cone K
⊂ H is a non-empty closed subset satisfying the following properties:

(1) K + K ⊆ K,
(2) λK ⊆ K, for all λ ∈ R+.

We denote by K∗ the dual cone of K, i.e., the set

K∗{y ∈ H |〈x, y〉 ≥ 0, f or all x ∈ K}.
It is known that K∗ is a closed convex cone [23]. If � ⊂ H is an arbitrary closed
convex set (or in particular � = K) then for any x ∈ H, the projection P� (x) of x
onto � is unique and it is well defined. We have that P�(x) is the unique element
in � such that

‖x − P�(x)‖ = min
y∈�

‖x − y‖.

In particular, if K ⊂ H is a closed convex cone and x ∈ H is an arbitrary element,
we denote by P�(x) the projection of x onto K. We recall the following classical
result.

Lemma 2.1. (i) If � ⊂ H is an arbitrary closed convex set, then for any x ∈ H, P�

(x) is the unique element in � such that:

〈P�(x) − x, P�(x) − y〉 ≤ 0, f or all y ∈ �

(ii) If K ⊂ H is a closed convex cone, then for every x ∈ H, PK (x) is the unique
element in K such that:
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(1) 〈PK (x) − x, y〉 ≥), for all y ∈ K
(2) 〈PK (x) − x, PK (x)〉 = 0

Proof. For a proof of this result, the reader is referred to [2].
If � ⊂ H is a closed convex set and x∗ ∈ �, then the normal cone of the set �

at the point x∗ is by definition

N�(x∗) = {ξ ∈ H |〈ξ, y − x∗〉 ≤ 0, f or ally ∈ �}
We have the following result.

Proposition 2.2 (10). If � ⊂ H is a closed convex set and x ∈ H is an arbitrary
element, then we have that y = P�(x)if and only if x∈ y + N� (y).

We need also to recall the following notions. We say that a mapping T: H →
H is completely continuous if T is continuous and for any bounded set B ⊂ H,
we have that T(B) is relatively compact. A completely continuous field on H is a
mapping f:H → H of the form f(x) = x - T(x), for any x ∈ H, where T: H → H
is a completely continuous mapping. If K ⊂ H is a closed convex cone, we call a
mapping f: K → H regular, if for each sequence {xn}n∈N ⊂K, weakly convergent
to x∗ and such that the sequence converges to v∗ ∈ H in norm, then the equation
f (x∗) = v∗ holds.

3. Complementarity problems and variational inequalities. Two notions of
exceptional family of elements

Let (H,< ., . >) be a Hilbert space, K ⊂ H a closed convex cone and f: K → H a
mapping.

The Nonlinear Complementarity Problem defined by f and the cone K is

NC P( f, K ) :
{

find x∗ ∈ K such that

f (x∗) ∈ K ∗ and 〈x∗, f (x∗)〉 = 0.

If f is an affine mapping that is, f (x) = Ax+b, where A: H →H is a linear operator
and b is an element in H, then the problem NCP(f, K) is the linear complementarity
problem and it is denoted by LCP(A, b, K). The problem LCP(A, b, K) have been
studied by many authors.

We consider in this paper only the problem NCP(f, K). The following definition
was considered in several of our papers: [7, 8, 25, 27, 29].

Definition 3.1. We say that a family of elements {xr }r>0 ⊂ K is an exceptional
family of elements for f, with respect to K, if for every real number r > 0, there
exists a real number µr > 0 such that the vector ur = µr xr + f (xr ) satisfies the
following conditions:
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(1) ur∈ K∗,
(2) 〈ur , xr 〉 = 0,
(3) ‖xr‖ → +∞ as r → +∞.

Definition 1 is justified by the following alternative result.

Theorem 3.1. Let be a Hilbert spaceK ⊂ H a closed convex cone and f:H→ H a
completely continuous field.

Then there exists either a solution to the problem NCP(f, K) or f has an excep-
tional family of elements with respect to K. (in the sense of Definition 1).

Proof. A proof of this result is in paper [29].

Corollary 3.1. Let be a Hilbert space K ⊂ H a closed convex cone and f:H→ H
a completely continuous field. If f is without exceptional family of elements, in the
sense of Definition 1, with respect to K, then the problem NCP(f, K) has a solution.

Remark 3.2. In a recent paper [9], A. Carbone and P. P. Zabreiko obtained a variant
of Theorem 3 for the case when f is a regular mapping and satisfying the property
that for any bounded set B ⊂ H, f(B) is relatively compact. In this case f is not
necessarily a completely continuous field.

Now, we suppose that � ⊂ H is an arbitrary unbounded closed convex set and
f:H→ H a completely continuous field. We suppose that f has the representation
f (x) = x −T (x), for any x ∈ H, and we consider the variational inequality defined
by f and �, i.e.,

V I ( f, � :
{

find x∗ ∈ � such that

〈 f (x∗), x − x∗〉 ≥ 0for all x ∈ �

In our paper [39] we introduced the following definition.

Definition 3.2. We say that {xr }r>0 ⊂ H is a exceptional family of elements for
the completely continuous field, f, with respect to �, if the following conditions
are satisfied:

(1) ‖r‖ → +∞ as r → ∞,
(2) for any r >0 there exists a real number µr > 1 such that µr xr ∈ � and
T (xr )-µr xr ∈ N�(µr xr ).

We have the following result.

Remark 3.3. If in Definition 3.2 we have that � is a closed convex cone and
{xr }r>0 is an EFE then {xr }r>0 is an EFE in the sense of Definition 3.1 too. Be-
cause in Definition 3.2 we have that µr xr ∈ �, we can not transfer some results
obtained for complementarity problems to general variational inequalities. To solve
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this problem we will introduce in Section 5 another notion of EFE based on an
Implicit Leray–Schauder Alternative.

Theorem 3.4. Let (H,<.,.>) be a Hilbert space, � ⊂ H an arbitrary unbounded
closed convex set and f:H→ H a completely continuous field. Then the problem
VI(f, �)has at least one of the following properties:

(1) VI(f, �)has a solution,
(2) the completely continuous field f has an exceptional family of elements in
the sense of Definition 3.2, with respect to �.

Proof. A proof of this theorem is in [39].

Corollary 3.2. Let (H,<.,.>) be a Hilbert space, � ⊂ H an arbitrary unbounded
closed convex set and f:H→ H a completely continuous field. If f is without excep-
tional family of elements, in the sense of Definition 3.2, with respect to�, then the
problem VI(f, �)has a solution.

In our papers [7, 8, 26–36, 38, 39] and in [47, 50–60] are shown classes of
mappings without exceptional family of elements in the sense of Definition 3.1 or
Definition 3.2. But recently we remarked that some properties of mappings related
to Definition 3.1 that is related to complementarity problems couldn’t be extended
to an arbitrary variational inequality. Because of this fact, a natural question is to
know if it is possible to unify the both notions of exceptional family of elements.

In the next sections of this paper, we will show that this unification is possible
by an implicit Leray–Schauder type alternative.

4. An implicit Leray-Schauder type alternative

It is well known that one of the most important theorems of Nonlinear Functional
Analysis is the Leray–Schauder Alternative, proved in 1934 by the topological
degree. [46].

Now, there exist several kinds of Leray–Schauder type alternatives proved by
different methods not based on topological degree. See [3] among others. We note
that, the classical Leray–Schauder Alternative has many applications to ordinary
differential equations.

First, we recall the classical Leray-Schauder Alternative but given in a Hilbert
space.

Theorem 4.1. (Leray-Schauder Alternative). Let (H,<.,.>) be a Hilbert space,
D ⊂ H a convex set and U a subset open in D such that 0 ∈ U. then each continuous
compact mapping f : Ū → D has at least one of the following properties:

(1) f has a fixed point
(2) there is (x∗, λ∗) ∈ ∂U×]0, 1[ such that x∗ = λ∗ f (x∗)
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We denoted by ∂U the boundary of U.. We note that Theorem 6 is the explicit
form of the following more general result proved by A. J. B. Potter in 1972 [48].

Let E(τ ) be a locally convex space and B ⊂ E a closed convex set with int(B)
non-empty and such that 0 ∈ int(B).

Theorem 4.2. (Potter). Let T: [0, 1] × B → E be a continuous mapping such that
T ([0, 1] × B) is relatively compact in E. We consider on [0, 1] × B the product
topology. Suppose:

(1) T(t, x) �= x, for all x ∈ ∂ B and t ∈ [0, 1],
(2) T ({0} × ∂ B) ⊂ B.

Then, there is an element x∗ ∈ B such that T (1, x∗) = x∗.

Proof. A proof without topological degree is given in [48].

The following Implicit Leray-Schauder type alternative is a consequence of
Theorem 4.2.

Theorem 4.3. Let T: [0, 1] × B → E be a continuous mapping such that T([0,1]×B)
is relatively compact in E. We consider on [0, 1] × B the product topology. If the
following assumptions are satisfied:

(1) T ({0} × ∂ B) ⊂ B
(2) T(0, x) �= x for any x ∈ ∂ B, then at least one of the following properties is
satisfied:

(i) there exists x∗ ∈ B such that T (1, x∗) = x∗,
(ii) there exists (t∗, x∗) ∈]0, 1[×∂ B such that T (t∗, x∗) = x .

Proof. The reader can find easily the proof of this result using Theorem 4.2.

Remark 4.4. If in Theorem 4.3 we consider T(t, x) = tf(x), where b = D and f: →
D is a continuous compact mapping we obtain Theorem 4.1.

5. A New notion of exceptional family of elements

Let (H,<., .>) be a Hilbert space, and f: H → H a completely continuous field
with a representation of the form f (x) = x − T (x), for all x ∈ H.

Let � ⊂ H be an unbounded closed convex set. We consider again the varia-
tional inequality VI(f,�).

Definition 5.1. We denote by ρ = ||P�(0)||. We say that a family of elements {xr }r>ρ

is an Exceptional Family of Elements (shortly EFE) for the completely continuous
field f with respect to �, if the following properties are satisfied:
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(1) ‖xr‖ → ∞asr → +∞(r > ρ),
(2) for any r>ρ there exists tr ∈] 0, 1 [such that tr T (x) − xr ∈ N�, (xr ).

We have the following result.

Theorem 5.1. (Alternative theorem). Let � ⊂ H be a non-empty unbounded
closed convex set and f:H → H a completely continuous field such that f (x) =
x − T (x) for any x ∈ H. Then there exists either a solution to the problem VI (f,�),
or the mapping f has an EFE, in the sense of Definition 5.1, with respect to�.

Proof. First, we recall that the problem VI(f,�) has a solution if and only if the
mapping �(x) = P�(x − f (x)) has a fixed point. If the problem VI(f,�) has a
solution, then in this case the theorem is proved.

We suppose that the problem VI(f,�) has no solution. In this case, we consider
for any real number r, such that r > ρ = ||P�(0)||, the closed convex set Br =
{x ∈ H |‖x‖ ≤ r}. Obviously ∂ Br = {x ∈ H |‖x‖ = r}. For any r> 0, we
consider the mapping �r : [0, 1] × Br → H defined by �r [t, x] = P�[t (x −
f (x))] = P�[t (T (x))]. We have that �r is continuous and �r ([0, 1] × Br ) is
relatively compact in H. Moreover, �r ){0} × ∂ Br ) ⊂ Br and for any x ∈ ∂ Br , we
have that �r (0, x) �= x.

We deduce that the assumption of Theorem 4.3 are satisfied, and because we
supposed that the problem VI(f,�) is without solution, we have that �r (1, x) �= x
for any x ∈ Br , which implies that there exists tr∈ ]0, 1[ and xr ∈ ∂ Br such that
�r (tr , xr ) = xr , for any r > ρ.

We have that for any r > ρ there exists tr ∈ ]0,1[ and xr∈ ∂ Br such that xr =
P�[tr (T (xr ))]. Therefore we have xr ∈ � and tr T (xr ) ∈ xr + N � (xr ). From the
last relation we obtain

tr T (xr ) = xr + ξ, where ξ ∈ N�(xr ).

Hence, we have tr T(xr ) - xr∈N�(xr ) and we have that the family {xr }r>ρ is an
EFE for the completely continuous field f, and the proof is complete.

Theorem 5.2. (An Existence Theorem). Let � ⊂ H be a non-empty unbounded
closed convex set and f: H → H a completely continuous field. If f is without EFE
in the sense of Definition 5.1, with respect to �, then the problem VI (f, �) has a
solution.

Proof. The theorem is a consequence of Theorem 5.1.

Corollary 5.1. Let (Rn,<., .>) be the n-dimensional Euclidean space, � ⊂ Rn an
unbounded closed convex set and f: Rn→ Rn a continuous mapping. If f is without
EFE, in the sense of Definition 5.1, with respect to � (considering f = I - (I - f),
with I the identity mapping), then the problem VI (f,�) has a solution.
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Remark 5.3. If � = K, where K is a closed convex cone in H, then in this case
the notion of EFE defined in Definition 5.1 is exactly the notion of EFE used in
Complementarity Theory.

Indeed, let {xr }r>ρ be an EFE as defined in Definition 5.1. In this case we have,
ρ = ‖PK (0)‖ = 0, i.e., r > 0 and for any r> 0 we have tr T(xr ) - xr∈N�(xr ), which
implies

〈tr T (xr ) − xr , y − xr 〉 ≤ 0, f or all y ∈ K .

From the last inequality we deduce

〈T (xr ) − 1

tr
xr , y − xr 〉 ≤ 0, for all y ∈ K ,

or

〈xr − T (xr ) +
(

1

tr
− 1

)
xr , y − xr 〉 ≥ 0, for all y ∈ K .

If we denote by µr = 1
tr

− 1 > 0 we have

〈µr xr + f (xr ), y − xr 〉 ≥ 0, for all y ∈ K .

From the last inequality we obtain

(i) µr = µr xr + f xr ) ∈ K ∗, for all r > 0,
(ii) 〈µr , xr 〉 = 0 for all r> 0,

and because xr ∈ K, and ||xr || → +∞ as r → + ∞ we have that {xr }r>0 is an EFE
in the sense of Definition 3.1.

6. Mappings without exceptional family of elements

A consequence of Theorem 5.2 is the fact that we must put in evidence classes of
mappings without exceptional families of elements in the sense of Definition 5.1.

To realize this goal, we will prove, in this section, some tests which can be
used as sufficient tests for the non-existence of exceptional family of elements for
a given mapping. Certainly, applying these tests we obtain existence theorems for
the problem VI(f,�).

Before doing this, we will give an equivalent form of the notion of exceptional
family of elements.

Let (H,<., .>) be a Hilbert space and � ⊂ H an arbitrary unbounded closed
convex set. We denote by ρ = ‖P�(0))‖.

Definition 6.1. Given a mapping f : H → H , we say that a family of elements
{xr }r>ρ ⊂ � is an exceptional family of elements (denote by EFE) for f with
respect to � if and only if the following conditions are satisfied:
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(i) ‖xr‖ + ∞ as r → +∞ and

(ii) for any r > ρ, there exists tr ∈]0, 1[ such that, − f (xr ) −
(

1
tr

− 1
)

xr ∈
N�(xr ).

Proposition 6.1. If f : H → H is a completely continuous field with a repre-
sentation of the form f (x) = x − T (x) for all x∈ H, then a family of elements,
{xr }r>ρ ⊂ � is an exceptional family of elements in the sense of Definition 5.1, if
and only if it is an exceptional family of elements for f, in the sense of Definition
6.1.

Proof. Indeed, suppose that is an EFE for f in the sense of Definition 5.1. Then
in this sense we have

(i) ‖xr‖ + ∞ as r → +∞ and
(ii) for any r > ρ, there exists tr ∈]0, 1[ such that, tr T (xr ) − xr ∈ N�(xr ).

We have,

T (xr ) − 1

tr
xr ∈ 1

tr
N�(xr ) ⊆ N�(xr )

which implies,

− f (xr ) −
(

1

tr
− 1

)
xr ∈ N�(xr )

Therefore {xr }r>ρ is an EFE for f in the sense of Definition 6.1.
Conversely, let {xr }r>ρ be an EFE for f in the sense of Definition 6.1.

Then we have,

(1) ‖xr‖ → +∞ as r → +∞ and

(2) for any r> ρ, there exists tr ∈]0, 1[ such that − f (xr )−
(

1
tr

− 1
)

xr ∈ N�(xr ).

We deduce that,

T (xr ) − 1

tr
xr ∈ 1

tr
N�(xr ),

and finally

tr T (xr ) − xr ∈ tr N�(xr ) ⊆ N�(xr ), (1)

that is, {xr }r>ρ is an EFE for f in the sense of Definition 5.1.
In our papers [26] and [33] we introduced condition (θ ) and we used this con-

dition in Complementarity Theory [26, 33, 28, 29, 35, 36]. Now we consider this
condition for variational inequalities.



414 G. ISAC

Definition 6.2. We say that f : H → H satisfies condition (θ) with respect to
a closed unbounded convex set� ⊂ H if and only if there exists ρ∗ > 0 such that
for any x ∈ � with ||x || > ρ∗, there exists y ∈ � with ||y|| < ||x || such that
〈x − y, f (x)〉 ≥ 0.

We note that condition (θ ) is satisfied in several interesting situations. We indi-
cate some of these situations.

Definition 6.3. We say that f : H → H satisfies the weak Karamardian Condition
on �, if there exists a bounded set D ⊂ � such that for all x ∈ � D there exists y
∈ D such that 〈x − y, f (x)〉 ≥ 0.

Remark 6.2. The classical Karamardian Condition [25] is when D is compact and
〈x − y, f (x)〉 > 0.

Proposition 6.3. If satisfies the weak Karamardian Condition, then f satisfies con-
dition (θ ).

Proof. The proposition is a consequence of Definition 6.2 and 6.3

Remark 6.4. The converse of Proposition 6.3 is not true. See our paper [26].
Another condition with applications to the study of existence of solutions to varia-
tional inequalities is the Harker-Pang Condition [20].

Definition 6.4. We say that f : H → satisfies Condition (HP), with respect to� if
there exists an element x∗ ∈ � such that the set �(x∗) = {x ∈ �|〈 f (x), x − x∗〉 <
0} is bounded or empty.

Remark 6.5. In the classical Harker-Pang Condition, the set �(x∗) is supposed to
be compact or empty, which is more restrictive as in Definition 6.4.

Proposition 6.6. If f : H → H satisfies Condition (HP), then f satisfies condition
(θ ).

Proof. Indeed, if f satisfies Condition (HP), then there exists x∗ ∈ � such that
the set �(x∗) is bounded or empty. In this case, there exists ρ0 > 0 such that �(x∗)
⊂ B(0, ρ0), where

B(0, ρ0@) = {x ∈ H |‖x |‖ � ρ0}.
We take ρ∗ max{ρ0, ‖x∗‖}. If x ∈ � is an arbitrary element such that ||x|| > ρ∗, then
we have x ∈/ �(x∗), which implies that 〈 f (x), x − x∗〉 ≥ 0.

Obviously, if for any x∈ � such that ||x|| > ρ∗, we take y = x∗ we obtain that f
satisfies condition (θ).
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Theorem 6.7. If f : H → H satisfies Condition (θ ) with respect to an unbounded
closed convex set � ⊂ H, then f is without exceptional family of elements, in the
sense of Definition 6.1, with respect to �.

Proof. Suppose that f has an EFE {xr }r>ρ , in the sense of Definition 6.1, with
respect to �. We recall that {xr }r>ρ ⊂ �.

Since ‖xr‖ → +∞ we take xr with ‖xr > max{ρo, ρ∗}, where ρ∗ > 0 is the
real number considered in Condition (θ).

For this xr there exists yr ∈ � such that ||yr || < ||xr || and 〈xr − yr , f (xr )〈≥ 0.
We have also,

− f (xr ) −
(

1

tr
− 1

)
xr ∈ N�(xr ).

If we denote by µr = 1
tr

− 1, we have µr > 0 and − f (xr ) − µr xr = ξ ∈ N�(xr ).
We deduce

0 ≤ 〈xr − yr , f (xr )〉 = 〈xr − yr , −µr xr − ξ〉
= 〈xr − yr , −ξ〉 − µr 〈xr − yr , xr 〉 = −〈xr − yr , ξ〉 − µr 〈xr − yr , xr 〉
= 〈yr − xr , ξ〉 − µr 〈xr − yr , xr 〉 ≤ −µr [‖xr‖2 − 〈yr , xr 〉]
< 0

which is a contradiction and the proof is complete.

Corollary 6.1. If f : H → H is a completely continuous field which satisfies
Condition (θ) with respect to an unbounded, closed convex set� ⊂ H, then the
problem VI (f,�) has at least one solution.

Corollary 6.2. Let (Rn,<., .>) be n-dimensional Euclidean space and f: R n→
Rn a continuous mapping. If f satisfies Condition (θ) or in particular, Karamar-
dian Condition or Condition (HP), with respect to an arbitrary unbounded closed
convex set� ⊂ Rn, then the problem VI (f,�) has at least one solution.

Remark 6.8. Other classes of mappings studied in Complementarity Theory and
satisfying Condition (θ) can be considered now in the theory of variational in-
equalities. For such classes of mappings the reader is referred to [25, 26, 28–30,
33–36, 38].

7. Variational Inequalities with Pseudomonotone Operators and the Notion
of Exceptional Family of Elements

A natural problem is to ask, if there exists at least a class of mappings F such that
if f ∈ F and the problem VI(f, �) has a solution for an arbitrary unbounded closed
convex � ⊂ H, then f is without EFE, in the sense of Definition 6.1. This section is
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dedicated to this problem. We will show that a such class of mappings is the class
of δ-pseudo-monotone mappings which generalizes the class of pseudomonotone
mappings, in Karamardian’s sense. It is well known that, the monotone operators
have been considered by many authors in the theory of variational inequalities [2,
20, 23, 24, 25, 44, 45].

The class of pseudomonotone operators was introduced in relation with some
applications in Economics. Any monotone operator is pseudomonotone, but the
converse is not true. For more information and results about pseudomonotone
operators, the reader is referred to [1, 4–6, 11, 12–15, 16–19, 41–43, 49].

We recall the definition of a pseudomonotone operator as it was introduced by
S. Karamardian [41, 42].

Let (H,<., .>) be a Hilbert space, f: H→ H a mapping, and � ⊂ H an un-
bounded closed convex set.

We recall that f is pseudomonotone (in Karamardian’s sense) on �, if and only
if, for any x, y ∈ �, we have that 〈x − y, f (y)〉 ≥ 0 implies 〈x − y, f (x)〉 ≥ 0.

Definition 7.1. We say that f is δ-pseudomonotone on� if for any x∈ � there
exists a real number δ(x) > 0 such that for any y ∈ � with ||y|| > δ (x), we have
that 〈x − y, f (y)〉 ≥ 0 implies 〈x − y, f (x)〉 ≥ 0.

Remark 7.1. If f is pseudomonotone then it is δ-pseudomonotone but the converse
is not true. In the following results we will use the notion of EFE in the sense of
Definition 6.1.

Theorem 7.2. Let (H,<., .>) be a Hilbert space f: H→ H a mapping and � ⊂ H
an unbounded closed convex set. If f is δ-pseudomonotone on � and the problem
VI(f,�)has a solution, then f is without EFE with respect to �.

Proof. Indeed, let x∗ ∈ � be a solution to the problem VI(f,�). Then we have

〈x − x∗, f (x∗)〉 ≥ 0 for all x ∈ �

In particular we have 〈x − x∗, f (x∗)〉 ≥ 0, for all x∈ � with ‖x‖ > max
(‖x∗‖, δ(x∗), ρ), where ρ = ‖P�(0)‖.

We suppose that {xr }r>ρ is an EFE for f with respect to �. We take xr , with r > ρ
and such that ‖xr‖ > max(‖x∗‖, δ(x∗), ρ). We have − f (xr )−µr xr = ξ ∈ N�(xr )
and we obtain (considering the δ-pseudomonotonicity)

0 ≤ 〈xr − x∗, f (xr )〉 = 〈xr − x∗, −µr xr − ξ〉 = 〈xr − x∗, −ξ〉 − µr 〈xr − x∗, xr 〉
= 〈x∗ − xr , ξ〉 − µr 〈xr − x∗, xr 〉 � −µr 〈xr − x∗, xr 〉 = −µr

[
‖xr‖2 − 〈x∗, xr 〉

]
< 0

(since µr = 1
tr

− 1 > 0), which is a contradiction. Therefore f is without EFE
with respect to � and the proof is complete.

From Theorem 7.2 we deduce the following consequence.
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Corollary 7.1. Let (H,<., .>) be a Hilbert space, f: H→ H a completely continu-
ous field and � ⊂ H, an unbounded closed convex set. If f is δ-pseudomonotone (in
particular pseudomonotone) on�, then the problem VI(f,�)has a solution, if and
only if f is without EFE, with respect to�.

8. Comments and open problems

We presented in this paper a notion of EFE, which unifies the study of solvability
of Complementarity Problems and of Variational Inequalities on unbounded closed
convex sets in arbitrary Hilbert spaces. This new notion of EFE is based on an
Implicit Leray-Schauder type Alternative.

The following questions are consequences of the results presented in this paper.

(I) It is interesting to find other classes of mappings without EFE in the sense of
Definition 4.

(I) It is interesting to find other classes of mappings f with the property that the
solvability of the problem VI(f,�) implies that f is without EFE with respect
to �.

(I) Perhaps, the existence of no EFE property for f is the most general up to date
coercivity property.
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